Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
In this paper we introduce a constructive approach to study well-posedness of solutions to stochastic uid-structure interaction with stochastic noise. We focus on a benchmark problem in stochastic uidstructure interaction, and prove the existence of a unique weak solution in the probabilistically strong sense. The benchmark problem consists of the 2D time-dependent Stokes equations describing the ow of an incompressible, viscous uid interacting with a linearly elastic membrane modeled by the 1D linear wave equation. The membrane is stochastically forced by the time-dependent white noise. The uid and the structure are linearly coupled. The constructive existence proof is based on a time-discretization via an operator splitting approach. This introduces a sequence of approximate solutions, which are random variables. We show the existence of a subsequence of approximate solutions which converges, almost surely, to a weak solution in the probabilistically strong sense. The proof is based on uniform energy estimates in terms of the expectation of the energy norms, which are the backbone for a weak compactness argument giving rise to a weakly convergent subsequence of probability measures associated with the approximate solutions. Probabilistic techniques based on the Skorohod representation theorem and the Gyongy-Krylov lemma are then employed to obtain almost sure convergence of a subsequence of the random approximate solutions to a weak solution in the probabilistically strong sense. The result shows that the deterministic benchmark FSI model is robust to stochastic noise, even in the presence of rough white noise in time. To the best of our knowledge, this is the rst well-posedness result for stochastic uid-structure interaction.more » « less
-
Peszynska, Malgorzata; Pop, Iuliu_Sorin; Wohlmuth, Diepenbeek_Barbara (Ed.)Many real-life applications require mathematical models at multiple scales, defined in domains with complex structures, some of which having time dependent boundaries. Mathematical models of this type are encountered in seemingly disparate areas e.g., flow and deformation in the subsurface or beneath the ocean floor, and in processes of clinical relevance. While the areas are different, the structure of the models and the challenges are shared: the analysis and simulation must account for the evolution of the domain due to the many coupled processes in the multi-scale context. The key theme and focus of the workshop were novel ideas in the mathematical modeling, analysis, and numerical simulation, which are cross-cutting between the two application areas mentioned above. The talks have covered the mathematical treatment of such problems, as well as the development of efficent numerical discretization schemes and of solvers for large-scale problems.more » « less
An official website of the United States government
